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ABSTRACT

An expression has been developed for the longl-
tudinal component of the vibratory force exerted on a prolate
spheroid by the operation of a marine propeller in a space-
varying fleld (wake). Two evaluation schemes have been con-
sidered: one by integration of the pressure signal over the
surface of the ellipsold and the other by means of Lagally's
theorem with the ellipsoid represented by a known source-sink
distribution. Numerical calculations indicate the important
role played by propeller clearance and slenderness ratio in
the magnitude of the vibratory force.
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INTRODUCTION

Durlng the past few years, theoretical investiga-
tions have been undertaken at Davidson Laboratory of
Stevens Institute of Technology into the vibratory pressure
and veloclty fleld around an operating marine propeller with
the 6bJect of determining the forces exerted on nearby
bodies. Early studies’2 were restricted to the case of uni-
form inflow to the propeller which 1s represented by a line-
vortex array to glve the effect of loading and by a source-
sink distribution for the blade thickness effect., Later
studles of the propeller fleld treated nonuniform inflow con-
ditions since in the case of a marine propeller located be-
hind a hull, nonuniformity of the inflow fleld i1s a common
occurrence., In these studies®’* which were concerned with
both acoustic and hydrodynamic media, the propeller was rep-
resented by axlal and tangentlal doublet distributions on the
propeller blade axis wilth strength depending on radial and
angular position. In considering propeller operation under
nonuniform inflow conditions (wake), the analysis takes cog-
nizance of a sltuation more realistic than the open water
condition, since the effect of the boundary is taken implicit-
ly into account through the wake formation. In other investi-
gations, initiated by Davidson Laboratory toward fulfillment
of the long-range objective of the serles, expressions have
been developed for the vibratory forces and moments produced
by a marine propeller on a doubly-infinite rigid plate® and
an infinitely long rigid strip.® Results of the latter study
are surprisingly simple and indicate that a vibratory force
of considerable magnitude could be obtalned from the transient
field generated by an operating propeller.,

The present study endeavors to determine the vibra-
tory forces exerted on an ellipsoid of revolution by a marine




propeller operating in a specified wake behind a prolate
spherold.

"The study has been carried out under Bureau of Ships
Fundamental Hydrodynamics Research Program S-R009 01 01,
Contract Nonr 263(16) and administered by David Taylor Model
Basin,

QUASI-STEADY AND UNSTEADY VIBRATORY
FORCE ON A PROLATE SPHEROLD

Vibratory Force

The propeller disc is located at a distance f from
the center of the spheroid whose major axis coincides with
the longltudinal axils of the propeller (see sketch). The
prolate spheroid 1s deflned in terms of its major axls. 2a and
1ts eccentriclity e, Two car-
tesian coordinate systems are
used with the same direction
of positive axes but with dif-
ferent origin. The axes
located at the propeller center
are designated by x, y, 2z and
the axes with origin at the
center of the ellipsoid of

Sketch No. 1 revolution by Xos Yoo Zge

The relation between the carteslian coordinates

Xos Vo1 Zg and ellipsoidal coordinates {, u, ¥ are given by

o = kut 1< b w

»
]

k(l-uz)l/2 (tj"‘-l)l/2 cos ¥ -1l

<
(o}
]

z = k(l—u)l/é (cz-l)l/é sin y ogy<em
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For a given ellipsold of known eccentriclity e and major
semi-axis, a,

(1)

]

l

]
Jee

£ = %) k =ae, u

1/2 1/2 1/2
The radial distance r_ 3) / = a(1-e2) (1 - &2)

(x2 +y

and the x_-coslne directlion of the unit vector tangent to

o
the surface { = constant 1is given by
1/2
2
coB a4 = _l_'...g__ (2)
1 - e2&2

The propeller located behind a ship operates 1n space-varying
inflow conditions so that its rotating blades experience a
time-dependent gust. On the basls of this physical reason-
ing an approximate theory has been developed”’ utilizing
two-dimensional unsteady theory in a stripwise fashion. It
18 true, on the other hand, that the pressure of the pro-
peller disturbs the fluld field around the body so that the
stream lines adjacent to the body are distorted. This amounts
to distortion of the original shape of the body. The effect
on the boundary of the presence of the propeller, the so-
called "image effect" necessary to restore the boundary, was
rigorously evaluated in the case of the doubly-infinite rigid
plate® and later for an infinitely long rigid cylinder.®’®

In the latter studies 1t was found independently that the
vibratory force exerted on the cylinder due to the "image
effect” 1s identically the same as that developed directly
by the propeller action. To the best of the authors' know-
ledge, there 1is not at present a method of constructing the
"image potential" for the case of an ellipsoid of revolution
in the presence of the propeller. This case is complicated
further by the fact that the propeller potential is more con-
venlently expressed in cylindrical coordinates whereas the
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fluid potential around the ellipsold of revolution is ex-
pressed in terms of ellipsoidal coordinates. This study,
therefore, while taking cognizance of the effect of the
boundary on the propeller, ignores the "image effect." It is
believed that for bodies of practical interest--that is, very
slender bodies--the effect of the so-called "image system"
will be secondary. The axial veloclty induced by the action
of the propeller is much smaller than the forward veloclty

of the body, so that the effect of the distortion in the
axlal direction will be small.

There are two posslible schemes for evaluating the

" axial vibratory force exerted on the prolate spheroid: 1) by

integrating the transient pressure over the surface of the
body; 2) by means of Lagally's theorem since the spheroid can
be represented by a line source-sink distribution of known
strength. It 1s to be noted that for a propeller located on
the body axis, only the fore-and-aft force 1s present; the
transverse force 1n any direction will be nil due to the
symmetry.

According to scheme 1, the axial force AFx exerted

on a ring of radlus r, located at X9 will be given by

dxo
AFx=-PSina I'Ode-c—é—s-a

where P 1s the pressure distribution arising from the opera-
ting propeller. The resultant axial force exerted on the
ellipsoid will be given therefore by

f+a r2ﬂ
Fx = ] Protan o df dx
f-a 0
or rl 2
R, = a(1-2) [ [ RB(r,e) € a0 a (3)
1 %
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by utilizing eq. 2. In this form the expression for the
pressure arising from the propeller is written in terms of
the nondimensional coordinate £ of the prolate spheroid. The
pressure fleld emanating from the operating propeller is made
up of & superposition of axlially and tangentlally directed
doublets. The latter doublet distribution is in a plane
normal to the x-axis and wlll not contribute to the axial
component of the vibratory force, whereas the first one,
which 1s designated as the thrust producing pressure, PT’
will be the only contributor in eq. 3.

In the second scheme the ellipsold of revolution 1is
represented by a llne segment distribution of sources and
sinks between the focal points, of strength® given by

U
T %o

where U = forward veloclty of the hull

_ 2e 1+e

E =g -tn iz (%)
Then the interaction force between the propeller and the ele-~
ment of the singularity representing the ellipsold will be
given by application of Lagally's theory as

AF, = - Ump(£-x) % dx « u

X x | r=0 (5)

where

,ux = axlal component of the veloclty induced by the pro-
peller at any point on the axis of the ellipsoid.

It is known, however, that the instantaneous linear-
ized pressure in the field of an operating propeller 1s given

by

- Q09 _ 99
®/p 36 v ox (6)

|




where ) = propeller angular veloclity and p = fluid density and

¢ the velocity potential. The first term is the torque-

assoclated pressure signal; the second 1s the pressure com-

ponent associated with propeller thrust. The torque-associated

pressure acting in a plane normal to the x-axls will not con-

tribute to the x-component of the force as 1t integrates to

zero on any circle with center on the propeller axis. In

addition, 1its value on the x-axlis is 1dentlcally zero, since ‘

r = 0.2 Hence eq. 6 1s reduced to [
N

X x ~ p0

which upon substitution into eq. 5 and integration leads to

‘o
1

r=0 dx (7)

f+k
x - %f (x-£) P
f-k

where k = ae which deflines the locus of the focal points. The
axial component of the vibratory force exerted on the prolate
spherold by the propeller action i1s determined either by eq. 3
or eq. 7, respectively, once the pressure on the hull or on
its axis 1s determined.

Pressure Field

The pressure fileld emanating from a marine propeller
operating under space-varylng inflow condlitions has been the
subject of ref. 3 and 4. The flow about propeller blades
rotating through the space-varying ship wake is equivalent to
that of a wing moving through a sinusoidal gust. Although the
problem 1s of very pronounced three-dimensional character
(low aspect ratio of the blades, three-dimensional gust), the
two-dimensional unsteady aerodynamic theory has been utilized
in a stripwlse fashion as the best expedient in the present
state of the art. It 1s assumed that a two-dimensional flow
condition exlsts at every blade section and that three-

—_ o O & = =
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dimensional effects can be taken into account by Burrill's!?
method which appllies correctlon factors to the axial and
tangential components of the inflow velocity relative to the
propeller,

At any radial sectlion of the blade the velocity
components and the resultant veloclty are shown 1in sketch
No. 2 below:

ZERO LIFT
LINE

N Wy 40t (- W)

{-f Qr >
where V = propeller forward velocity
Q = angular propeller velocity
a, a' = axlal and taggential correction factors,
respectively
U, Ut = resultant fluid velocity with respect to the

propeller in the absence and presence of the
wake, respectively

wi’wT = longltudinal and tangentlal wake velocity,

respectively
a* = angle of attack
o = effective angle of attack
) = hydrodynamic pitch angle
Mo = effective pltch angle

R-855
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If the ilnstantaneous veloclty U 1is resolved alo.g and normal
to the chord, then the corresponding surge and cross veloci-
ties are given as

*
Vs = U cos o = Ws

»*
V. =Usina + Wc

=
[

g = [w& + at (Qr-WT)] cos 1 + [WL-a(V>Wt)] sin n

. [WL - a (V-WL)] cos 7, - [FT + a! (Qr—MTq sin n

=
i

For small angles, the following four combinations
of surge and cross velocitied will simulate the flow around
the propeller and give rise to corresponding components of
11ft produced by a propeller operating in a wake:

Surge Velocity Cross-flow Velocity Lift

1 U Ua* (1)
2 u W, (2) (8)
3 Wy Ua* (3)
y -W_ ‘ W, (%)

The 1ift at the corresponding sections is determined by
utilizing the results of unsteady aerodynamic theory in terms
of the harmonic constituents of the wake flow. The elementary

thrust and torque developed by a propeller section at a radial
distance r, will be given by

%%1= Ty p % Cp, U' cos A

= qp2 g 2
a?l— my P B CL U< sin

R-855
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where

1ift coefficlient per blade sectlion
B = number of blades

= BB _
g = Er?: = golldity

b

chord length at each propeller section

On the assumption of constant blade-loading distribution
along the chord the strength of the pressure doublet related
to the thrust and torque will be given by

o 6
1nBO(t-—1 - 2
P (ry,0,t)= 2 i sin BB o ( Ry rl) dr
T\ 1971y T nBb é“—rl a‘fl
n= -
n#£o (10)
4 v
6 b
1 o 2l o e
F (r ,6,t)= B Z Ti_ gin 0Bb ¢ nE Q 29"1) i 4@
Q 1 1 ™ m §r1 rl arl
Nn=-o

The strengths of pressure doublets are finally expressed by
means of eqs.9 and 10 in terms of the 1lift coefficlents
associated with four flow conditions indicated by eq. 8. Then
the pressure signals associated with the thrust and torque
loading are given by the well known expressions

R 2w
-2 d 1
Wfo J; Fplr ,0,t) s 3 dry 49,

(11)

R .27 3
__ 1 1
Q E’—'] [ FQ(I’1:91,t) 730, 3 dr, de,
0 Y0

)
I
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where r,,6, polar coordinates of the doublet singularity on

the propeller plane

X,r,0 = cylindrical coordinates of the field point or
point of observation

R = propeller radius

S = Descartes! distance between the singularity and
field point ={x*+r®+r,® - 2rr, cos(8, 9)} 172

In ref. 3 the pressure signals emanating from the
propeller and assoclated with the thrust and torque loading
are determined by means of eq. 11 in conjunction with
eqs. 8, 9, 10. The thrust loading pressure which 1s of in-
terest in the present work 1s given by (see eq. 20 for the
case k = 0 in the above reference)

o1nBat
PT'lm Bf c(r,) [ B3, nt Z "Z_(Bs’n+n +Baon-n1)+
Z. bnl(Bn —B" ) 1 ao .
T a:n+nl SaN-N1 -1X _2_ Bs"n + (12)
n,=1
i gy -B; )- °ny 1(Bg -BS )
it 3 Bty ey ) TSN | gy
where o
' cos nB@ cos nt . at
BV»n (x2+r241% )y/2 (1-x,cos e)V/2
am
B" - sin nB6 cos nBéE at
Vol (%FrZart )v/2 (l-klcose)v/2 (13)
2r.r 2r Bb —1222
Ky= —2 ¢ ¢o(p,) = —2L gin B0 r;
Y Xt (r) nBb ° " 2r, °
R-855
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a, ,bnlthe cosine and sine Fourier coefficients of the load-
1

ing function (eq. 9) expressed in terms of the harmonic con-
stituents of the wake velocity. Equation 13 can be written
in more convenient form as

2w

nB¢ d¢
xBj , = x cos nBGf cos /
o1 o  [(x®+r®+rd -2rr cos¢]®/?

27 [ 00

= -%cos nBGf cos nBé¢ {;e'mcos mé IJm,(k'r) Jm(k'rl) e'lx'k'dk' d¢
0 k!'=0

where use is made of the well known Fourier expansion of the

inverse of the Descartes' distance 1/S, i.e.:

[ ') . , qlxlk'
1
é"" Z ; €, cos mé Jm(k r)Jm(k r,)e dk
m= k=0
where em =1 m=20
€ =2 form £ 0

m
Interchanging the order of summation and integration (which
18 permissible in this case as shown in Appendix 2 of ref. 6)
leads to

[+ ]
-|x (k'
xBi,n = -27 cos nB6 B%I J plk'r) 3 olk'r))e l | dk*
b .

Similarly

[+ ]
xB! 2 O [ 5 (k'r)J ,(k'r) |
,n=-7r81n nBOS-i nB r nB e d
0

k'
Therefore eq. 12 18 seen to be made up of terms of the form

cos8 nBe i @ ] [} - lx'k'
T { sin nBo BxJ’ T p(k'e)Iplkr,)e dikc?
0

(eq. 14 con't on next pg)

R-855
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- cos(ntn,)B6 Sl
ﬂanl{sin(ninl)Bg s;.fo J(ntnl)Beﬂdr)J(ninl)Beﬁgrl)e I I dk!

o0

J(ntn)BGGvr)J(ninl)Beﬂﬂrl)e'lek'

dk!'

(14)

b cos(ntnl)Bel 2
Ni1}sin(nin,)Bol 3x

where n, extends from one to infinity.

However, the indicated 6-integration in eq. 3 fixes
the order of harmonics which will contribute to the blade~
frequency vibratory force. In fact, the only terms which re-
main after the 6-integrations are those for n-n,=0 or n,=n
since nf0 and n+nf0, both being greater than zero.

Therefore,out of an infinite number of possible com-
binations of the harmonics of the space function with those
of the loading function,only the zero order harmonic of the
space functlon with the blade frequency part of the loading
contributes to the vibratory force. Hence the blade-frequency
vibratory force referred to a coordinate system fixed at the
center of the spheroid will be given by

B inBQt

By= - £ a(1-e?) fJ olry)[(ag(ry)- 10,1

3{_[ 7 (ktry) 3 (kre)e T HE K eqir ar ae

k=0
where
1/2 1/2
rl = a(1-e2) 4 (1-62) /
f' = f/a

The € - integration by parts leads to

;- g:I.nBﬂt B a(l_ez)IR c(r,) [an(rl)-ibn(rl)] [11-12] |
0

(15)

R-855
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where

I, = 1 1

(e + £2] 72 " [(21-a)2 + r2] /2

1 -
I, = / / 3 leey) 7 (e ) e~ T A g g
1 Yo

or 1

(o) d ’
Iz = F/; {aa(f'+<é)2 + (1-:5551/2 + r2 | /2

or

e = m/r:f RO e (9 a

where K(o) = complete elliptic integral of the first kind of
modulus

2fra(1-£2) 1/2
T {a3(£14€)? + [M(1-€3)/24r, R | 1/2

A = a(1-e?) /2

Q_;/. = Legendre's function of the second kind of -1/2
order

a?(f1+¢)2 + 2\2(1-¢2) + r?
2ra (1-¢2)3/2

In eq. 15 I, denotes the bow and stern contribution to the
vibratory force and I, gives the contribution of the rest of
the surface. The second term of I, gives the stern contribu-
tion, which is the predominant contribution, whereas the first
term 1s assoclated with the bow contribution.

In the second scheme where the pressure PT has to
be evaluated at r = 0, eq. 14 indicates that P # 0 if and
only if n =0 ornt n; = 0. The case n = 0 18 of no interest
to us since the blade-frequency force must be evaluated. The
case n + n; = 0 18 impossible since n and n, vary from 1 to
infinity. Therefore the only possibility is n - n, = 0 or

R-855
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n, = n which reduces eq. 12 to the form

R o '
inBQY ¢ (ry)-1b_(r )} 3 J (k'r,) ‘lek k'
" I (rl){anr) w }E‘L o (16)

After substitution of eq. 16 into eq. 7 the longitudinal com-
ponent of the vibratory force is determined as

P

: f+ae R
o 1nBat
Fo=~- =g f ¢(r,) {an(rl)-ibn(rl)} (r-x)
x=f-ae O

[e ]
- )
5%[ I (k') e |2k qir ar, o
0

which after the k and x integrations leads to

inBQt AR
F, =B2-E——J' c(r,) { a (r,) -bn(rl)}{J( ae ae

o f+ae)2+rf + #( f-ae)3+r2

f-ae + J(f—ae)z + 2
+ log dr, (17)
f+ae +J( f+ae)? + r?

Comparison of eq. 15 and 17 shows that both are of the same
structure and, in fact, the first two terms of eq. 17 can be
shown to be ldentical with the first twoaterms of eq. 15 for
a slender body, with e—1 and %9-?-‘—1;-). The logarithmic
term is equivalent to the I, term, which is small and repre-
sents the contribution of the line singularity distrlbution
extended between the focal points.

For both expresslons, however, the remalning radial
Integration must be performed either numerically, since
numerical values of the loading functlon an(r,_)are known in
terms of the measured wake veloclty, or by utilizing the
mean~-value theorem of the calculus,

R-855
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The second scheme, however, can be further simpli-
fied by assuming that the chordwise and loading functions are
evaluated at a suitable radial distance (Re) and then con-
secutive integrations with respect to x and r, lead to the
following form

Fy =B--—-E—C(R )’ an(Re)—ibn(Re) ‘

R( f+ae) + (f+ae)\/(f-ae25>+ R2
{ RE log R(f-ae) + (r-ae)y/ (f+ae)2 + R2

2 2
+R210g [f-ae + f-ae 4+ R ] } (18)

f+ae + f+ae + R

The method of evaluating the Fourier coefficlents
an(r;)and bn(rl) has been indicated sketchily but the necessary
information 18 presented in detall in refs. 3 and 4. With the
experience gained from previous calculation, it is suggested
that the quasi-steady approach for the loading function be
utllized. Making use of the two-dimensional unsteady theory
in a stripwise fashion has led to a great discrepancy between
the measured and calculated vibratory thrust, whereas the
quasl-steady results are close to the experimental. This dis-
crepancy has led to a serles of investigatlons at Davidson
Laboratory which apply lifting-surface theory approach to the
marine propeller case.

In the quasi-steady flow case, then, the 1lift per l
unit of blade radius at each radial distance can be written*
as
*
L ~ 2mpe Ko K (v2a’+ UW, - Ua Wy - WW ) (19)
where

¢ = semi-chord at that radius

K s,Ks = correction factors for cascade and finite
g aspect ratio effects!?

R-855
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The remainder of the symbols are as defined previously,.

It is suggested that eqs. 18 and 19 be used in the
evaluation of the longltudinal component of the vibratory
force. Numerical calculations have been obtained by means of
eq. 18 to determine the dependence of the longitudinal vibra-
tory force on propeller clearance, as well as on the slender-
ness ratlio of the ellipsoid of revolution, for the same load-
ing conditions and a given propeller radius.

In the limitling case e-»1l, when the ellipsoid de-
generates to a segment of the x-axis of length 2ae about the

origin, it 1s easlly seen that lim Fx 0. When, however,
el
e+ 0 and the elllpsold degenerates to a sphere of radius a,

the vibratory force Fx 18 obtalned by three successive appli-
catlions of L'Hospltal's rule as

i

_ a.inBOt a®R2 R2
F, = Be ¢(R,) {an(Re)-ibn(Re)}{(mg)s/a (1+ Ez)}(zo)
aa 2 2
The space factor, (;EIEETE/Z (1 + 2?2)

aBRZ
is represented by a sink disk. The additional term R2/2f2 is
very small in all cases of practical interest, so that the
8ink disk representation of the propeller action is a good
approximation as far as the longltudinal force is concerned.
It 1s interesting to notice, however, that the difference
between eq. 20 and that of ref, 10 lies in the form of the
loading distribution. The sink representation for the pro-
peller action can be proved exact. 1In the case treated
previously, *® the entire disk is activated, while in the

compares with of ref. 10 where the propeller actlion

present case only segments of the disk participate in simulating

propeller actlon., This fact is the actual reason for the ob-
served differences. Thus eq. 20 should be considered more

R-855
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accurate. In the marine propeller case with very wide blades
the difference between disk activator and activating sectors
should be small.

Calculations indicate the importance of the pro-
peller clearance and the slenderness ratio of the body and,
of course, the shape of the afterbody, since the slope of the
cross-gsectional area curve depends on the slenderness of the
body.

In changing the propeller clearance from zero to
1/4 of propeller diameter (C = .O4a), the vibratory force is
reduced by about 50% for slenderness ratio 0.1 to 0.2, which
1s a region of practical interest. Figure 1 is a chart of
the space function (of egs. 18 and 20) versus slenderness
ratio % =Jl - e2 for R = 0.08a.

CONCLUSION

In the foregolng analysis an expression for the
longitudinal component of the vibratory force exerted on an
ellipsoid of revolutlion by the propeller action has been
developed in closed form in terms of elementary functilons, and
the relative lmportance of the various parameters has been
revealed. It 18 indicated that the vibratory force svrongly
depends on the axial propeller clearance as well as on the
slenderness of the elllpsold of revolution and therefore on
the slope of the cross-sectional area at the afterbody section.
In fact, in the region of practical 1lnterest, for slenderness
ratio of 0.1 to 0.2, changing the propeller clearance from
zero to L/4 propeller dlameter reduces the longitudinal vibra-
tory force to approximately half. In this range, also, the
force decreases rapidly with increasing filneness.
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